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Abstract
Recently the nonlocal coherent-potential approximation (NLCPA) has been
introduced by Jarrell and Krishnamurthy for describing the electronic structure
of substitutionally disordered systems. The NLCPA provides systematic
corrections to the widely used coherent-potential approximation (CPA) whilst
preserving the full symmetry of the underlying lattice. Here an analytical and
systematic numerical study of the NLCPA is presented for a one-dimensional
tight-binding model Hamiltonian, and comparisons with the embedded cluster
method (ECM) and molecular coherent potential approximation (MCPA) are
made.

1. Introduction

For many years the coherent-potential approximation (CPA) [1] has been widely used for
describing the electronic structure of substitutionally disordered systems. However as a single-
site mean-field theory, the CPA is not a fully satisfactory theory of disorder and it leaves much
important physics out of consideration. In the CPA a site only feels the average effect of its
environment and so, for example, statistical fluctuations in the chemical environment of a site
responsible for sharp structure in the density of states (DOS) are not described [2]. Furthermore,
the CPA is incapable of describing the effects of chemical short-range order (SRO) and other
important environmental effects such as lattice displacements. However, a new theory, the
nonlocal coherent-potential approximation (NLCPA) [3], has recently been introduced by
Jarrell and Krishnamurthy as a way of addressing such problems. The purpose of this paper
is to investigate the general validity of the NLCPA by means of numerical calculations with a
simple one-dimensional (1D) tight-binding model.

There have been many previous attempts to generalize the CPA, though none have been
completely satisfactory [2]. Of these theories, only the embedded cluster method (ECM) [4]
and the molecular coherent-potential approximation (MCPA) [5] will be considered here. The
ECM is a method for embedding a cluster of real impurity sites into a medium such at that
provided by the CPA. Averaging over an ensemble of the various cluster configurations can
therefore give a non-self-consistent description of local environment effects. The MCPA
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goes a step further by enforcing self-consistency with respect to the cluster, and so yields
a new effective medium. However, this medium has the periodicity of the cluster and so
possesses the unsatisfactory property of breaking the symmetry of the underlying lattice.
Such supercell periodicity also means that the MCPA is computationally prohibitive since it
involves a Brillouin zone (BZ) integration which scales with the cluster size, thus preventing
its application to realistic systems.

However, the recently proposed NLCPA [3] appears to possess all the attributes required
for a satisfactory cluster generalization of the CPA. It was introduced in the context of a two-
dimensional tight-binding model Hamiltonian as the static version of the dynamical cluster
approximation (DCA) [6, 7] used for describing short-range correlations in strongly correlated
electron systems. A recent application has been to describe impurity bound states in disordered
d-wave superconductors [8]. The NLCPA again determines an effective medium via the self-
consistent embedding of a cluster; however, the problem of maintaining translational invariance
is solved by imposing Born–von Karman boundary conditions on the cluster, leading to an
effective medium which has the site-to-site translational invariance of the underlying lattice. A
further consequence is that the computational difficulties of the MCPA are alleviated since the
BZ integration in the NLCPA does not scale as the cluster size increases.

The NLCPA was subsequently derived by Rowlands [9] within the first-principles
Korringa–Kohn–Rostoker (KKR) [10, 11] multiple scattering formalism, and the resulting
KKR-NLCPA [9, 12] method was first implemented for a realistic three-dimensional system
(bcc Cu50Zn50) in [13]. Moreover, the KKR-NLCPA method has recently been combined with
density functional theory, enabling first-principles total energy calculations to be carried out
as a function of SRO using self-consistently determined potentials [14]. Such self-consistent-
field (SCF)-KKR-NLCPA calculations [14] naturally include a description of the Madelung
contribution to the total energy which is missing in the conventional single-site SCF-KKR-CPA,
and important future developments include application to systems with spin [15], strain [16],
and valency [17] fluctuations.

Due to the continued conceptual development of the NLCPA method and its first-principles
application to realistic systems in particular, it is important to establish its general validity by
addressing the following questions. Firstly, does the NLCPA produce physically meaningful
results, in other words are the fluctuations described real? Secondly, does the DOS calculated
using the NLCPA converge to the exact result in practice as the cluster size increases, and
does it do so systematically? To date, these important questions have not been addressed.
However, this can be done by carrying out a systematic study of the NLCPA for a simple 1D
tight-binding model with diagonal disorder and nearest-neighbour hopping. There are three
reasons for this. The first is that in one dimension the exact result can be obtained against
which meaningful comparisons can be made. Secondly, fluctuations are much more significant
in one dimension and so detailed structure is expected in the DOS which can be accurately
interpreted. Thirdly, such a model is computationally very simple and so large clusters can be
considered, thus enabling the convergence properties of the theory to be investigated. Such an
analysis is carried out in this paper, and any insight gained which could aid the interpretation
of realistic calculations is presented.

The outline of this paper is as follows. For completeness and for the purpose of introducing
notation, the concept of the effective medium is described first in section 2. Next, brief
derivations of the CPA, ECM, and MCPA are given in sections 2.1, 2.2, and 2.3 respectively. In
particular, the equivalence of the ‘cavity’ [3, 8] and the ‘renormalized interactor’ [2] formalism
is established. An understanding of these theories is crucial in order to appreciate and assess the
advantages and possible limitations of the NLCPA. In section 2.4, a derivation of the NLCPA
is given with an attempt to provide a physical picture of the theory, and comparisons with the
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formalism of sections 2.1, 2.2, and 2.3 are made where necessary. In section 3, a numerical
investigation of the NLCPA is presented, and results are compared with those of the CPA,
ECM, and MCPA. Finally, conclusions are drawn in section 4.

2. Formalism

In a basis labelled by the sites of the direct lattice, consider a tight-binding Hamiltonian with
matrix elements

H i j = εiδi j + W i j(1 − δi j) (1)

and corresponding Dyson equation

Gi j = Gi j
0 +

∑

k

Gik
0 εk Gkj (2)

where εi is the on-site energy at site i , and W i j is the parameter describing the hopping between
site i and site j . For the case of a random substitutionally disordered binary alloy with only
diagonal disorder, the set of {εi } vary from site to site in a random fashion, taking the value eA

with probability c or eB with probability 1 − c. Denoting a specific configuration of {εi } by
γ , and the corresponding Green’s function for that configuration by Gγ , we are interested in
〈Gγ 〉, the average over all possible configurations. To do that we iterate (2) in a Born series,
average term by term, and resum in the form

〈Gi j
γ 〉 = Gi j

0 +
∑

k,l

Gik
0 �kl 〈Glj

γ 〉 (3)

where �i j is the exact self-energy1. Since (3) is also a Dyson equation, it may be interpreted
as describing an effective medium in which the site-diagonal part of �i j describes an effective
on-site energy, and the site-off-diagonal part describes an effective correction to the hopping.
The quantities 〈Gi j

γ 〉 and �i j both possess the full translational (and point-group) symmetry of
the underlying lattice, and so (3) may be expressed in reciprocal space as

〈G(k)〉 = G0(k) + G0(k)�(k)〈G(k)〉. (4)

The matrix elements of the Green’s function are therefore given by the BZ integral

〈Gi j
γ 〉 = 1

�BZ

∫

�BZ

dk
(
(G0(k))−1 − �(k)

)−1
eik(Ri −R j ) (5)

with (G0(k))−1 = E − W (k). Since it is not feasible to solve the problem exactly, the idea of
an effective medium theory is to determine the best possible approximation to �i j and 〈Gi j

γ 〉.

2.1. Coherent-potential approximation

The main approximation made by the CPA [1] is to assume a site-diagonal translationally
invariant self-energy εiδi j , where εi = ε for all i . The CPA effective medium is then described
by the equation

G
i j = Gi j

0 +
∑

k

Gik
0 εk G

kj
. (6)

In order to determine the medium, let us consider any site i . By removing the sum over all sites
k and making up for the neglected terms by replacing the free particle Green’s function with

1 Clearly �i j is not diagonal in the site index otherwise we would be making a mean-field approximation by writing
the average of a product 〈εi Gi j

γ 〉 in terms of the product of the averages 〈εi 〉〈Gij
γ 〉.
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the cavity Green’s function Gii , the site-diagonal part of (6) at site i can be formally rewritten
in the form

G
ii = Gii + Giiεi G

ii =
((Gii

)−1 − εi
)−1

. (7)

In fact Gii is related to a quantity known as the renormalized interactor �ii [2] by

Gii = (E − �ii )−1 (8)

where �ii is given by the locator expansion [2]

�ii =
∑

k �=i

W ik gk W ki +
∑

k �=i,l �=i

W ik gkW kl gl W li + · · · (9a)

gi = (E − εi)−1. (9b)

It can be seen that �ii and therefore Gii depends only on the medium surrounding site i and is
independent of the chemical occupation of i itself. It is therefore straightforward to define the
Green’s function for a real impurity embedded in the medium simply by replacing the effective
site energy εi with a real site energy εi

α at site i , where α = A or B . From (7) this is given by

Gii
α =

((Gii
)−1 − εi

α

)−1 =
(
εi − εi

α + (G
ii
)−1

)−1
. (10)

Now the CPA demands that
∑

α

PαGii
α = G

ii
(11)

where Pα is the probability that site i is of chemical type α. In other words, the replacement of
an effective site energy by a real site energy should, on the average, produce no change to the

CPA medium. Since the medium is translationally invariant, it follows from (6) that G
ii

must
also be given by the BZ integral

G
ii = 1

�BZ

∫

�BZ

dk (E − ε − W (k))−1 . (12)

The CPA medium is therefore determined from a self-consistent solution of (11), (12).

2.2. Embedded cluster method

The ECM [4] is a method for embedding a cluster of real impurity sites in a medium such as that
provided by the CPA. First consider (6) describing the CPA medium, but with the sites i, j lying
within some cluster C . By restricting the sum over all sites k to run over the sites belonging to
the cluster only, and making up for the neglected terms by replacing the free particle Green’s
function with the cavity Green’s function G, (6) can be formally rewritten in the form

G
I J = G I J +

∑

K

G I K εK G
K J

(13)

where notation has been introduced so that all sites belonging to the cluster have been denoted
by capital letters. In matrix form (13) can be expressed as

G
CC = GCC + GCCεC G

CC = (
(GCC )−1 − εC

)−1
(14)

where all matrices are in the space of the sites belonging to the cluster. In analogy to (8) in
the derivation of the CPA, GCC is related to the cluster renormalized interactor �CC [2] by the
expression

GCC = (E − �CC )−1 (15)
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where �I J , the matrix elements of �CC , are given by the expansion

�I J =
∑

k �∈C

W Ik gk W kJ +
∑

k �∈C,l �∈C

W Ik gk W kl gl W l J + · · · (16)

and gi is given by (9b). It can be seen that �CC and therefore GCC depends only on the
medium surrounding the cluster C and is independent of the chemical occupation of C itself.
The Green’s function for an impurity cluster embedded in the CPA medium can now be
straightforwardly defined simply by replacing the effective CPA cluster-site energy matrix εC

with a matrix εC
γ containing a configuration γ of real site energies {ε I

α} at each cluster site I ,
where α = A or B . From (14) this is given by

GCC
γ =

((GCC
)−1 − εC

γ

)−1 =
(
εC − εC

γ + (G
CC

)−1
)−1

. (17)

Once the CPA medium is known, the Green’s function for an impurity cluster embedded
in the medium can be straightforwardly determined through (17), and properties can then
be calculated at any desired cluster site. However, an average over all possible cluster

configurations γ is usually taken, in which case it will be found that 〈GCC
γ 〉 �= G

CC
for a

cluster size Nc > 1. This is due to an average effect on the electron hopping within the cluster
caused by the disorder configurations. Thus εC gains an off-diagonal correction and could be
interpreted as a (non-self-consistently determined) cluster self-energy �C with matrix elements
� I J . However, this is defined only at the cluster sites, with the single-site CPA self-energy
εi situated at all other sites, and hence there is no new effective medium. To do that, self-
consistency with respect to the cluster must be enforced. One way forward is the MCPA [5], as
described in the next subsection.

2.3. Molecular coherent-potential approximation

As described above, a cluster self-energy may be defined by averaging over an ensemble
of impurity cluster configurations embedded in a medium. The idea of the MCPA [5] is
to determine an effective medium with a periodically repeating cluster self-energy. Such a
medium may be defined by first dividing the lattice up into a collection of identical non-
overlapping clusters, and then writing the Green’s function in the form

G
CC′ = GCC′

0 +
∑

C′′
GCC′′

0

(
�C′′ + W C′′C′′)

G
C′′C′

. (18)

These cluster matrices have site matrix elements[
G

CC′ ]

i j
= G

i j
,

[
GCC′

0

]

i j
= Gi j

0 , i ∈ C, j ∈ C ′ (19)

[
�CδCC′

]
i j

= �i j ,
[
W CC δCC′

]
i j

= W i j , i, j ∈ C. (20)

The main approximation made here has been to assume that the (as of yet undetermined) cluster
self-energy is cluster-diagonal. This means there are self-energy terms relating sites in the same
cluster, but none relating sites in different clusters. The single-site translational invariance of
the underlying lattice is therefore broken. However, the MCPA does require the medium to
be invariant upon translation by a cluster so that it has the periodicity of a ‘superlattice’. As

such, �C is independent of the cluster label C , and the Green’s function G
CC′

depends only on
the difference between C and C ′. The real-space cluster dependence of (18) may therefore be
removed using the Fourier transform

G
CC

(q) =
∑

C′
G

CC′
e−iq(RC−RC′ ) (21)
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where RC − RC′ is the vector distance between the centres of clusters C and C ′, and q is a
vector in the (smaller) BZ of the superlattice. Equation (18) now becomes

G
CC

(q) = GCC
0 (q) + GCC

0 (q)
(
�C + W CC

)
G

CC
(q) (22)

where all matrices have the dimension of the cluster size only, and the inter-cluster dependence
is expressed through the reciprocal-space vector q.

The next step is to embed an ensemble of impurity cluster configurations into the medium
defined above. This may done using the ECM of section 2.2, yielding the impurity cluster
Green’s function

GCC
γ =

(
�C − εC

γ + (G
CC

)−1
)−1

. (23)

However, there are two main differences. Firstly, the cluster self-energy �C replaces the
effective CPA cluster-site energy matrix εC . Secondly, the medium outside the cluster
comprises a periodically repeating cluster self-energy rather than single-site CPA effective site
energies, and hence �CC has a slightly different expansion [2]. The final step is to generalize
the CPA argument and demand that the average of GCC

γ over all γ be equal to the Green’s
function for the medium itself, i.e.

〈GCC
γ 〉 = G

CC
or

∑

γ

Pγ G I J
γ = G

I J ∀ I, J ∈ C. (24)

For a cluster containing Nc sites, the number of configurations will be 2Nc for a binary alloy.

Since the medium has the periodicity of the cluster, it follows from (21), (22) that G
CC

must
also satisfy

G
CC = 1

�BZ

∫

�BZ

dq
(
E − �C − W CC − W CC (q)

)−1
(25)

where the integral is over the first BZ of the superlattice. Therefore the MCPA medium is
determined from a self-consistent solution of (24), (25).

The MCPA appears to be a natural generalization of the single-site CPA, but it does have
some major disadvantages. Specifically, the intra-cluster hopping is now different from the
inter-cluster hopping expressed through W CC (q) and so measuring properties at sites situated
at the boundary of the cluster will in general give different results than those from sites at the
centre of the cluster, for example. The supercell periodicity also causes problems in obtaining
a well-defined spectral function, and leads to the computationally demanding BZ integration
in (25) which scales as Nc increases.

2.4. Nonlocal coherent-potential approximation

Like the MCPA, the NLCPA [3] determines an effective medium via the self-consistent
embedding of a cluster. However, the key difference is that Born–von Karman boundary
conditions are imposed on the cluster, leading to an effective medium which has the
translational invariance of the underlying lattice. The first step is to solve the problem of an
isolated cluster with Born–von Karman boundary conditions imposed.

2.4.1. Cluster with Born–von Karman boundary conditions. Conventionally in solid state
theory the problem of a lattice comprising a large number of sites with Born–von Karman
boundary conditions is considered [18]. In one dimension, for example, this essentially means
a very long chain of sites where one end of the chain maps round to the other end. If the lattice
constant is a, then the first BZ extends from −π/a to +π/a in reciprocal space, and the number
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Figure 1. (a) Real-space 1D tile (denoted by double-headed arrow of length 4a) for an Nc = 4
cluster. Sites are denoted by open circles, and a is the lattice constant. (b) Set of cluster momenta
(periodic) denoted by closed circles for the Nc = 4 cluster. The tiles centred at the cluster momenta
are denoted by arrows and the solid line is the first BZ. The part of the tile centred at π/a that lies
outside the first BZ can be translated by reciprocal lattice vectors into the first BZ to lie between
−π/a and −π/4a. (c) Set of cluster momenta (anti-periodic) denoted by closed circles for the
Nc = 4 cluster. Again the tiles centred at the cluster momenta are denoted by arrows and the solid
line is the first BZ.

of k points in the BZ is equal to the number of sites in the chain. It follows that if the length of
the chain is now decreased to contain only say a cluster of Nc sites, then the number of k points
in the BZ will then equal Nc. These are referred to as the set of cluster momenta {Kn}, where
n = 1, . . . , Nc. However, the boundaries of the BZ remain the same since the lattice constant is
unchanged. The real-space cluster sites {I } (denoted by capital letters) and the corresponding
set of cluster momenta {Kn} satisfy the relation [3]

1

Nc

∑

Kn

eiKn(RI −RJ ) = δI J (26)

for which the conventional lattice Fourier transform is recovered when Nc → ∞. For example,
in one dimension the (periodic) solutions are

{RI } = (I − 1)a I = 1, . . . , Nc

{KP
n} =

(
2n − Nc

Nc

)
π

a
n = 1, . . . , Nc,

(27)

for Nc even. To date, only periodic solutions have been considered in the literature. However,
for a given cluster size there is also a solution of (26) corresponding to anti-periodic Born–
von Karman boundary conditions (where in one dimension, for example, the wavefunction at
one end of the chain maps back to minus the value at the other end). In one dimension, the
anti-periodic set of cluster momenta are given by

{KAP
n } =

(
2n − Nc − 1

Nc

)
π

a
n = 1, . . . , Nc. (28)

A 1D example for Nc = 4 is shown in figure 1. Notice that {KP
n} always includes the

origin in reciprocal space, whilst {KAP
n } are shifted (by −π/(Nc a) in one dimension) and lie

symmetrically about the origin. For the remainder of this derivation it is however convenient to
simply choose one of the sets of solutions above. A discussion concerning this choice is given
in section 2.4.5. Cluster quantities that are translationally invariant can be related in real and



3186 D A Rowlands

reciprocal space through (26); for example, for the cluster self-energy we have

� I J
cl = 1

Nc

∑

Kn

�cl(Kn)e
iKn(RI −RJ )

�cl(Kn) =
∑

J

� I J
cl e−iKn(RI −RJ ).

(29)

2.4.2. Mapping cluster to lattice. When mapping the cluster problem to the lattice, there are
certain conditions on the geometry of the chosen cluster which must be satisfied in order that the
translational and point-group symmetry of the lattice is preserved [3]. Specifically, if the cluster
sites are now considered as ‘embedded’ in the lattice, then it must be possible to surround them
with a tile which has this point-group symmetry and can be periodically repeated to fill out
all space. This is analogous to the conventional Wigner–Seitz tile [18] used to surround a
single site, and restricts the allowed values of Nc for a given lattice. The construction for
choosing appropriate clusters and tiles was first explained in [3] for a 2D square lattice and was
generalized to realistic 3D lattices in [9, 12, 13]2. In one dimension, the tiles are simply lines
(see figure 1).

Next, note that the periodicity of the real-space tiles define a reciprocal lattice, and each
reciprocal lattice vector K will correspondingly be centred at a reciprocal-space tile. For
Nc = 1, this would correspond to the usual tiling of the conventional reciprocal lattice with
Brillouin zones. However, for Nc > 1, reciprocal space will be more densely filled with K
points and the corresponding tiles will be smaller (by a factor of Nc). In the MCPA, such a
tile would be the BZ of the ‘superlattice’ (see section 2.3). However, the idea of the NLCPA
is to use Nc such tiles to fill out the original BZ of the underlying lattice (see figure 1 for a 1D
example), thus preserving translational invariance. In fact, the relevant K points will be the set
of cluster momenta {Kn}.

The mapping of the cluster problem to the lattice may now be achieved as follows. In
reciprocal space, consider the exact lattice self-energy �(k) of (4). The first step is to average
�(k) over the momenta q within each of the Nc tiles. This results in a ‘coarse-grained’ lattice
self-energy �(Kn) which has a constant but different value within each tile. On the other
hand, the cluster self-energy �cl(Kn) is defined only at the cluster momenta {Kn}. The main
approximation made by the NLCPA is to set �(Kn) to be equal to the value �cl(Kn) within
each tile n, i.e.

1

�Kn

∫

�Kn

dq �(Kn + q) = �(Kn) 	 �cl(Kn). (30)

In other words, the lattice self-energy is approximated by that obtained from the cluster.
The NLCPA approximation to the lattice Green’s function in reciprocal space may now be
represented by summing over the dispersion within each tile, yielding the set of coarse-grained
values

G(Kn) = Nc

�BZ

∫

�Kn

dk (E − W (k) − �(Kn))
−1 (31)

which are straightforward to calculate since �(Kn) is constant within each tile �Kn . Finally,
using (26), the real-space Green’s function at the cluster sites becomes

G
I J = 1

�BZ

∑

Kn

∫

�Kn

dk (E − W (k) − �(Kn))
−1 eiKn(RI −RJ ). (32)

2 This construction would also apply to the MCPA if aiming to preserve point-group symmetry.



Investigation of the nonlocal coherent-potential approximation 3187

(b)

(a)

Figure 2. (a) Self-energy � I J (denoted by double-headed arrows) for the case of an Nc = 2 cluster
in the MCPA, for I �= J . The vertical lines denote the boundaries of the tiles. (b) Same as (a) but
for the NLCPA.

The reason for coarse-graining the Green’s function is to preserve causality by removing phase
factors within the cluster; however, these can be reintroduced after the medium has been
determined (see section 2.4.4).

A physical picture of the resulting NLCPA medium may be seen by examining the
consequences of approximating the exact self-energy �(k) by �(Kn). Firstly, the self-energy is
now restricted to act within the range3 of the cluster sites {I, J } only (a more precise correlation
length can be defined using Nyquist’s sampling theorem [19, 3]). However, an electron can now
propagate to any site in the lattice via the dispersion W (k), and will experience an identical self-
energy � I J at that site. Thus � I J remains a translationally invariant quantity which depends
only on the distance between sites I and J , now within the range of the cluster size, but
independent of which site in the lattice is chosen to be site I . (� I J will also possess the
point-group symmetry of the underlying lattice provided that the clusters and tiles have been
chosen correctly.) An illustration of this for the simplest case of an Nc = 2 cluster in one
dimension is shown in figure 2.

2.4.3. Impurity problem. To determine the medium, the impurity problem must be solved.
The first step is to define the reciprocal-space cavity Green’s function G(Kn) via the Dyson
equation

G(Kn) = G(Kn) + G(Kn)�(Kn)G(Kn). (33)

In diagrammatic terms G(Kn) is introduced to ‘avoid over-counting self-energy diagrams on
the cluster’ [6]. Equation (33) can of course also be expressed in real space by applying the
Fourier transform (26) to yield

G
I J = G I J +

∑

K ,L

G I K �K L G
LJ

(34)

where G I J is the real-space cavity Green’s function. In a similar manner to that introduced
in the ECM and MCPA, here G I J is independent of the chemical occupation of the cluster
itself. However, the important difference is that it is not possible to give an explicit real-
space expansion for G I J in terms of the cluster renormalized interactor as was possible in
the ECM and MCPA. The reason for this is due to the translational invariance of the self-
energy in the NLCPA, and is an example of the so-called ‘embedding problem’ [20]. If
the ECM were used here to accommodate an impurity cluster in the NLCPA medium, then
self-energy terms linking the cluster sites to the medium sites would have to be broken (see
figure 2). Such a situation does not occur in the MCPA since the self-energy is cluster-diagonal
and hence there are no self-energy terms linking sites in a cluster to the rest of the medium

3 The self-energy � I J only takes into account exactly nonlocal correlations that are within the range of the cluster
size. However, when the medium is determined self-consistently, � I J will include the effects of physics on a longer
length scale at the mean-field level.
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in that case. Although the NLCPA cavity Green’s function G I J is a mathematically well-
defined quantity, it is not the same quantity as that introduced in the ECM. The embedding of a
cluster with Born–von Karman boundary conditions in the NLCPA medium should therefore be
viewed as a mathematical construction rather than a true embedding in the conventional sense.
Nevertheless, the NLCPA impurity cluster Green’s function may be defined in analogy to (17)
by replacing the cluster self-energy in (34) with a particular configuration of site energies {ε I

α},
i.e.

G I J
γ = G I J +

∑

K

G I K εK
α G K J

γ . (35)

The NLCPA self-consistency condition is equivalent to that of the MCPA given in (24), i.e.
∑

γ

Pγ G I J
γ = G

I J
(36)

where Pγ is the probability of configuration γ occurring. The effective medium is therefore
determined from a self-consistent solution of (32), (36). The cluster probabilities depend on the
SRO parameter α and so SRO may be included by appropriately weighting the configurations
in (36), provided that translational-invariance is preserved. Finally note that the NLCPA
formalism reduces to the CPA for Nc = 1 and becomes exact as Nc → ∞ since this would
amount to solving the exact problem described by (3), (4).

2.4.4. Calculation of observables. Once the medium has been determined through (32), (36),
there is no longer any need to coarse-grain the Green’s function via (31). Now, the Green’s
function may be calculated at any point in the BZ through

G(k) = (E − W (k) − �(Kn))
−1 (37)

and correspondingly at any sites i, j in the lattice by

G
i j = 1

�BZ

∫

�BZ

dk (E − W (k) − �(Kn))
−1 eik(Ri −R j ). (38)

In (37), (38) above, �(Kn) takes the appropriate value within each tile n. The configurationally
averaged DOS per site is given by the usual expression

n(E) = − 1

π
Im G

II
(39)

where G
II

may be calculated from (32) or from (38) above. However, when calculating site-
off-diagonal observables such as the spectral function, notice that �(Kn) taking the appropriate
(constant) value within each tile in (37) leads to discontinuities in G(k) at the tile boundaries.
In order to remedy this, Maier et al [21] proposed a scheme (within the DCA) to interpolate the
self-energy using maximum entropy; however, this can lead to causality being violated when
the fluctuations are large. An alternative scheme for removing such discontinuities has been
proposed by Batt et al [22] (see section 2.4.5 below).

2.4.5. Periodic and anti-periodic solutions. It was mentioned in section 2.4.1 that for a given
cluster size there are two possible sets of cluster momenta which may be used, {KP

n} and {KAP
n },

corresponding to periodic or anti-periodic Born–von Karman boundary conditions respectively.
In the literature to date, only periodic boundary conditions have been considered. The validity
of calculations using only {KP

n} is analysed in section 3. However, it has been suggested that
one should perform separate calculations using {KP

n} and {KAP
n }, and then average over both

results [23]. The philosophy behind this argument is that this has the effect of increasing
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Figure 3. (a) DOS (as a function of energy) for a pure material comprising of A sites, with
εA = +2.0. (b) DOS for a pure material comprising B sites, with εB = −2.0. (c) Exact DOS
results for a random A50B50 alloy of the pure materials above. (d) DOS for the same A50B50 alloy
obtained using the CPA.

the number of tiles, leading to a better sampling of the BZ. For example, in one dimension
the number of tiles is effectively doubled, as can be seen from figure 1. The validity of this
suggestion is also examined in section 3.

However, Batt et al [22] have proposed a more sophisticated scheme for combining both
solutions which also removes the discontinuities in G(k) mentioned in section 2.4.4 above.
Firstly, let us label the Green’s function (given by (37)) for the periodic and anti-periodic
solutions by GP(k) and GAP(k) respectively. Next, observe that by construction GP(k) is
a better approximation to the exact result in the region of reciprocal space close to each of
the points {KP

n} (in fact GAP(k) has discontinuities at {KP
n}). Similarly GAP(k) is a better

approximation to the exact result close to each of the points {KAP
n }. This suggests that, in brief,

one should construct a new Green’s function which follows GP(k) close to each of the points
{KP

n}, and follows GAP(k) close to each of the points {KAP
n }, and interpolates in-between. Such

a combined solution is guaranteed to be causal since it will always lie between the two causal
extremes GP(k) and GAP(k). Furthermore, the problem of discontinuities is automatically
removed since neither solution is followed where it has a discontinuity. Full details together
with an implementation of this scheme are given in [22].

3. Results

In this section results are presented for a 1D tight-binding model with diagonal disorder only
and nearest-neighbour hopping. Calculations for such a model were first performed with the
NLCPA by Moradian [24] using Nc = 4 and 8 clusters. Here the random site energies can
take the values εA = +2.0 and εB = −2.0, and the nearest-neighbour hopping parameter is
taken to be W = 1.0. Figures 3(a) and (b) show the DOS results for a pure material comprising
of energies εA or εB respectively. Notice that the pure bands just touch at E = 0.0, and so
a theory for an alloy of the two pure materials must deal here with this difficult ‘split-band’
regime. Indeed, from the Saxon–Hutner theorem [25], the gap at E = 0.0 for an alloy of the
two pure materials should correspondingly be just vanishing.
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3.1. Exact result and the CPA

Figure 3(c) shows exact DOS results for a random A50B50 alloy of the two pure materials shown
in figures 3(a), (b) obtained using the negative eigenvalue theorem [26]. The results have been
displayed using centred histograms at 400 points from E = −4.0 to +4.0, i.e. an energy
increment of 0.01 (a higher resolution yields too much structure for meaningful comparisons to
be made). As expected, the DOS is highly structured and the gap at E = 0.0 is just vanishing.

Next, figure 3(d) shows a CPA calculation for the same A50B50 alloy, displayed using
centred histograms at the same energy resolution as the exact result. The CPA result is very
smooth due to the neglect of nonlocal fluctuations in the disorder configurations. However, one
of the central successes of the CPA is its ability to describe the split-band regime. Indeed the
CPA correctly separates the DOS here into two sub-bands, but it is clear that it fails to correctly
describe the onset of such split-band behaviour. This is because the contributions to the DOS
near band edges are due to large clusters of like atoms which are not described by the CPA [2].

3.2. Cluster theories

The ability of the various cluster theories to improve upon the CPA result is now examined. All
results here have been displayed using centred histograms at the same energy resolution as the
exact result shown in figure 3(c), and all energies have a 10−3 imaginary part.

Figures 4, 5 show the DOS for the random4 A50B50 alloy of figure 3 using the various
cluster theories (top to bottom) as a function of cluster size (left to right). For the ECM
calculations shown in the first row, the configurational average has been taken over the 2Nc

possible cluster configurations and the DOS measured on one of the central sites. The central
site is likely to give a better description of the alloy since it is more influenced by the effects
of the disorder than say a site on the boundary. Similarly, the MCPA calculations on the
second row (‘MCPA centre’) have been measured at one of the central sites. For the MCPA
calculations on the third row (‘MCPA average’), the DOS has been measured at each site on the
cluster, and then an average taken over all such measurements. The fourth and fifth rows show
NLCPA calculations using the periodic and anti-periodic sets of cluster momenta {KP

n} and
{KA

n } respectively. Finally, the sixth row (‘NLCPA average’) shows an average of the periodic
and anti-periodic results given in the fourth and fifth rows.

First let us consider the ECM and MCPA central site results shown in the first two rows.
As a general observation, it can be seen that all plots show increasing structure in the DOS
as the cluster size increases. This arises from statistical fluctuations in the local environment
of a site (smoothed out by the single-site mean-field CPA) due to specific impurity cluster
configurations, and can be identified with corresponding structure in the exact DOS shown in
figure 3(c). Furthermore, the gap at E = 0.0 is systematically filled in as Nc increases due to
larger cluster configurations present which contribute to the DOS at the band edges. Although
this occurs more quickly with the MCPA than the ECM, it is interesting to observe that the
ECM results and the MCPA central site results are very similar for all cluster sizes, indicating
that self-consistency with respect to the cluster does not have a significantly large effect on the
DOS results for this system (in the absence of chemical SRO). Indeed, the ECM and MCPA
central site DOSs become identical for Nc = 12, and both converge almost to the exact result
at Nc = 16.5 Next, consider the ‘MCPA average’ results shown in the third row. For Nc = 2,
this is identical to the MCPA central site result by symmetry. As Nc increases, more structure

4 An investigation of the ability of these cluster theories to deal with the effects of chemical short-range order is
deferred to another publication.
5 In theory, the MCPA has the incorrect boundary conditions as Nc → ∞ since the self-energy would become
independent of k. In practice, however, the DOS converges quickly to the exact result.
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Figure 4. Configurationally averaged DOS per site as a function of energy (in units of the
bandwidth) for the various cluster theories (top to bottom) with cluster sizes Nc = 2, 4, 6 (left
to right).
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Figure 5. Configurationally averaged DOS per site as a function of energy (in units of the
bandwidth) for the various cluster theories (top to bottom) with cluster sizes Nc = 8, 12, 16 (left to
right).
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is again present in the DOS, although it is evident that the convergence towards the exact result
is much slower. For example, the troughs in the DOS deepen slightly as Nc increases from 8 to
16, but a higher cluster size would be needed for the troughs to reach the zero axis as seen in
the exact result.

Now let us turn our attention to the NLCPA calculations. First consider Nc = 2. In the
periodic (P) result, the peaks in the DOS can be identified with corresponding peaks present in
the ECM and MCPA calculations, but the troughs present at E = ±3 and ±1.5 are not seen
elsewhere. The anti-periodic (AP) result is equivalent to the CPA here due to symmetry. On the
other hand, the average over the P and AP results shown in the sixth row resembles the MCPA
result much more closely, with peaks and troughs lying at the same energies. For Nc = 4,
both the P and AP calculations separately resemble the ECM and MCPA only over certain
energy regions. However, the average over both the A and AP results again closely resembles
those of the ECM and MCPA. Thus, already it is clear that P and AP calculations separately
are not sufficient to yield a physical DOS, but the average does yield a physically meaningful
DOS with peaks and troughs which can be associated with correlations in the cluster disorder
configurations. The reason behind this is clear from section 2.4.5: the P and AP calculations
separately reproduce correlations arising from differing regions of reciprocal space, and thus a
combination of the two calculations is necessary to reproduce all correlations within the range
of the cluster size. The more sophisticated method for combining the A and AP solutions [22]
mentioned in section 2.4.5 is likely to give even better results than the straight average displayed
here: for example, the ‘flat’ regions in the Nc = 2 calculation are likely to be smoothed out.
Also, observe that as Nc increases further, the A and AP plots appear increasingly similar,
becoming almost identical at Nc = 12. This is expected since {KP

n} and {KAP
n } become closer

together as Nc increases.
Next, let us consider the convergence properties of the NLCPA. Importantly, it is clear

that, provided the periodic and anti-periodic results are combined, the DOS calculated using
the NLCPA converges smoothly and systematically towards the exact result. There are
however clear differences in the convergence properties of the NLCPA compared to the ECM
and MCPA. Firstly, the gap centred at E = 0.0 is filled in more quickly. Secondly, the
convergence for the NLCPA is more systematic in that the maximum height of the DOS
increases monotonically as Nc increases (Nc = 20 and 24 calculations further confirm this).
On the other hand, this means that large ‘spikes’ present in the ECM and MCPA DOS are not
reproduced for small cluster sizes, although such spikes are seen in the exact result. Indeed,
the ECM and MCPA plots show much more fine structure for a given cluster size, whilst the
NLCPA results are much more ‘smeared out’. Consequently, the ECM and MCPA central
site calculations converge much more quickly to the exact result as Nc increases. However,
it is important to appreciate that the main (and more important) features of the exact result
are reproduced fairly quickly by the NLCPA. Also, the ECM and MCPA calculations are
very sensitive to the energy resolution at which they are displayed, unlike the NLCPA. These
differences in the convergence properties are all a consequence of the fact that the NLCPA
is based on Nyquist’s sampling theorem [19, 3]. Finally, observe that both the MCPA average
(third row in figures 4, 5) and the NLCPA have not yet converged to the exact result at Nc = 16.
Indeed there has been much debate in the literature [27–30] concerning whether the dynamical
cluster approximation (DCA) [6] or the cellular dynamical mean field theory (CDMFT) [31]
(the analogues of the NLCPA and MCPA respectively for strongly correlated electron systems)
converges more quickly, carried out in terms of an average hybridization function coupling the
cluster to the medium. Whilst a convergence comparison of the DOS using the NLCPA and
MCPA average is not one of the objectives of this paper, it would be interesting to carry this out
by using larger (and computationally very demanding) cluster sizes. It is clear, however, that a
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convergence comparison depends greatly on whether the quantity in question is sensitive to the
energy resolution. For example, the convergence properties are likely to be much more similar
for a quantity such as the integrated DOS.

4. Conclusions

A comparison of the formalism of the NLCPA with the ECM and MCPA has been presented.
In the ECM and MCPA, the cavity function introduced has an explicit real-space expansion and
so the coupling of an impurity cluster to the surrounding medium is well defined. It is found
that this is not the case for the NLCPA cavity function (for Nc > 1) as a consequence of the
introduction of Born–von Karman boundary conditions. This implies that the cavity should
be viewed as a mathematical construction used to determine the medium, in departure from
traditional effective medium theories. The consequences of introducing anti-periodic Born–
von Karman boundary conditions within the NLCPA has also been investigated. Numerical
DOS results for a 1D model have been compared. It can be concluded that, firstly, the periodic
and anti-periodic solutions must be combined when using the NLCPA, particularly for small
cluster sizes. Importantly, only by then comparing the DOS with the exact result does it become
evident that the NLCPA does indeed produce physical results and, for each cluster size, shares
main features in common with both the ECM and MCPA. Since the NLCPA is based upon
Nyquist’s sampling theorem, it is however found that the DOS is far more ‘smeared out’ for a
given cluster size. Whilst the NLCPA DOS does (importantly) converge systematically towards
the exact result as the cluster size increases, it therefore does so less quickly than the ECM and
MCPA (measured on the central site and in the absence of chemical SRO). On the other hand,
such fine structure is less important and in any case would be smeared out in higher dimensions.
More importantly, the NLCPA preserves the full symmetry of the underlying lattice, yields
well-defined site-diagonal and site-off-diagonal properties, and is computationally tractable for
realistic systems.
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